1.

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

Alkaline earth metals (group 2 or IIA elements) differ from group 12 (or IIB) elements in the electronic

	configuration of their:								
	(A) Antipenultimate shel	1	(B) Innermost shell						
	(C) Outermost shell		(D) Penultimate shell						
2 .	The first ionization entha	alpy of magnesium is lov	wer than the first ionization	enthalpy of :					
	(A) Lithium	(B) Sodium	(C) Calcium	(D) Beryllium					
3.	caustic soda. When ${\rm CO_2}$	is bubbled through A, i	t turns cloudly. What is the						
	(A) CaCO ₃	(B) CaO	(C) $Ca(OH)_2$	(D) $Ca(HCO_3)_2$					
4.	The substance not likely	to contain $CaCO_3$ is : (B) Sea shells							
_	(A) Calcined gypsum	(C) Dolomite	(D) A marble statue						
5.	A metal M readily forms water soluble sulphate MSO_4 , water insoluble hydroxide $M(OH)_2$ and oxide MO which becomes inert on heating. The hydroxide is soluble in NaOH. The M is :								
	(A) Be	(B) Mg	(C) Ca	(D) Sr					
6.	A chloride dissolves appropriate colour is noted. Which			in Bunsen flame, no distinctive					
	(A) Be ²⁺	(B) Ba ²⁺	(C) Pb ²⁺	(D) Ca ²⁺					
7 .	The hydroxide which is best soluble in water is :								
	(A) Ba(OH) ₂	(B) $Mg(OH)_2$	(C) Sr(OH) ₂	(D) $Ca(OH)_2$					
8.	What is X in the following reaction?								
	$MgCl_2 + 2 H_2O \longrightarrow X$	+ 2 HCl + H ₂ O							
	(A) MgO	(B) Mg	(C) Mg(OH) ₂	(D) Mg(OH) Cl					
9.	(Yellow ppt) $T \leftarrow \frac{K_2CrO_4}{}$ test. Then, X is :	$- X \xrightarrow{\text{dil. HCl}} Y \text{ (Yel)}$	low ppt) + Z↑ (pungent sme	lling gas) If X gives green flame					
	(A) MgSO ₄	(B) BaS_2O_3	(C) CuSO ₄	(D) PbS_2O_3					
10.	The correct statement is	s/are :							
	(A) BeCl ₂ is a covalent of	compound	(B) BeCl_2 is an electron de	eficient molecule					
	(C) BeCl ₂ can form dime	er	(D) The hybrid state of Be in BeCl_2 is sp^2						
11.	another substance D read	cts with this solution C at lute H_2SO_4 at room tem	also produces the same gas E aperature. Element A imparts	an aqueous solution of C. When B. D also produces the same gas golden yellow colour to Bunsen					
	(A) Na, H ₂ NaOH and Z	'n	(B) K, H ₂ , KOH and Zn						
	(C) K, H ₂ , NaOH and Zi	ı	(D) Ca, H ₂ , CaCOH ₂ and Zn						
12.		t also forms an insoluble	sulphate whose mixture with	water at room temperature but a sulphide of a transition metal					
	(A) Ca (B) Mg	(C) Ba	(D) Sr					
13.	In electrolysis of NaCl w forms sodium amalgam:		en then ${ m H_2}$ is liberated at ca	athode while with Hg cathode it					
	(A) Hg is more inert than	n Pt							
	(B) More voltage is requi	ired to reduce $H^{\scriptscriptstyle{+}}$ at Hg	than at Pt						
	(C) Na is dissolved in Hg	while it does not dissolve	ve in Pt						
	(D) Conc. of H^+ ions is	larger when Pt electrode	e is taken						

14.	The correct sequence of increasing covalent character is represented by -									
	(A) BeCl ₂ < NaC	l < LiCl	(B) NaCl < LiCl <	$BeCl_2$						
	(C) BeCl ₂ < LiCl	< NaCl	(D) LiCl < NaCl <	$BeCl_2$						
15.	The paramagneti	c species is :								
	(A) KO ₂	(B) SiO ₂	(C) TiO ₂	(D) BaO ₂						
16.	The pair of ampl	hoteric hydroxides is :-								
	(A) Al(OH) ₃ , LiOH	ŀ	(B) Be(OH) ₂ , Mg(O	(B) Be(OH) ₂ , Mg(OH) ₂						
	(C) B(OH) ₃ , Be(O)H) ₂	(D) Be(OH) ₂ , Zn(O	H) ₂						
17.	Maximum therma	ıl stability is shown by								
	(A) MgCO ₃	(B) CaCO ₃	(C) SrCO ₃	(D) BaCO ₃						
18.	Stable oxide is o	btained by heating the ca	arbonate of the element							
	(A) Li	(B) K	(C) Na	(D) Rb						
19.	The stable super	oxide is formed by the e	element							
	(A) Li	(B) Na	(C) K	(D) Ca						
20.	The metallic lustr	e exhibited by sodium is	explained by							
	(A) diffusion of sodium ions									
	(B) oscillation of loose electrons									
	(C) excitation of free protons									
	(D) existence of b	(D) existence of body centred cubic lattice								
21.	A solution of sodium sulphate in water is electrolysed using inert electrodes. The products at the cathode and									
	anode are respe	ctively								
	(A) H_2 , O_2	(B) O_2 , H_2	(C) O ₂ Na	(D) O_2 , SO_2						
22.	The hydration en	ergy of Mg^{2+} is greater t	han that of							
	(A) Al ³⁺	(B) Na ⁺	(C) Be ²⁺	(D) Mg ³⁺						
23.	Calcium is obtain	Calcium is obtained by the								
	(A) electrolysis of molten calcium chloride									
	(B) electrolysis of	(B) electrolysis of a solution of CaCl ₂ in water								
	(C) reduction of $CaCl_2$ with carbon									
	(D) roasting of lin	(D) roasting of limestone								
24.	The material used	d in photoelectric cells co	ontains –							
	(A) Cs	(B) Si	(C) Sn	(D) Ti						
25.		Four alkali metals A, B, C and D are having respectively standard reduction potentials as -3.05 , -1.66 , -0.40 and 0.80 V. Which one will be the most reducing agent ?								
	(A) A	(B) B	(C) C	(D) D						
26.	Which of the foll	owing imparts violet colo	ouration to the Bunsen bur	ner non-luminous flame						
	(A) NaCl	(B) BaCl ₂	(C) CaCl ₂	(D) KCl						
27.	Which one of the	following is most basic ?	-							
	(A) Al_2O_3	(B) MgO	(C) SiO ₂	(D) P_2O_5						
28.	Molten sodium is	used in nuclear reactors	to	2 0						
	(A) absorb neutro	ons in order to control the	e chain reaction							
	(B) slow down the									
	(C) absorb the he	eat generated by nuclear	fission							
		isotopes produced in the								

- 29. Bone ash contains
 - (A) CaO
 - (B) CaSO₄
 - (C) $Ca_3(PO_4)_2$
 - (D) $Ca(H_{2}PO_{4})_{2}$
- 30. Which of the following does not illustrate the anomalous properties of Li?
 - (A) The m.p. and b.p. of Li are comparatively high
 - (B) Li is much softer than the other I group metals
 - (C) Li forms a nitride Li₂N unlike group I metals
 - (D) The ion of Li and its compounds are more heavily hydrated than those of the rest of the group
- 31. Of the following the commonly used as a laboratory desicator is
 - (A) Na₂CO₃
 - (B) CaCl₂
 - (C) NaCl
 - (D) None of the above
- **32.** The increasing order of solubility is
 - (A) CaCO₃.KHCO₃, NaHCO₃
 - (B) NaHCO₃, KHCO₃, CaCO₃
 - (C) KHCO₃, NaHCO₃, CaCO₃
 - (D) CaCO₃, NaHCO₃, KHCO₃
- 33. Which one of the following compounds gives methane on treatment with water?
 - (A) Al_4C_3
 - (B) CaC_2
 - (C) VC
 - (D) SiC
- 34. Sodium loses its lustre on exposure to air due to formation of -
 - (A) Na₂O, NaOH and Na₂CO₃
 - (B) Na₂O and NaOH
 - (C) Na2O and Na2CO3
 - (D) NaOH and Na₂CO₃
- 35. Which of the following hydride is covalent and polymeric:
 - (A) CaH_o
 - (B) BeH₂
 - (C) NaH
 - (D) BaH₂

CHECK YOUR GRASP						ANSWER KEY EXE					KERCIS	E -1			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	D	С	Α	Α	Α	Α	Α	В	A,B,C	Α	С	D	В	Α
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	D	D	Α	С	В	Α	В	Α	Α	Α	D	В	С	С	В
Que.	31	32	33	34	35										
Ans.	В	D	Α	Α	В										

Which of the following is incorrect?

1.

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT NSWERS)

	(A) Mg burns in air releasing dazzling light rich in UV rays.										
	(B) CaCl ₂ 6 H ₂ O	when mixed with ice give	s freezing mixture.								
	(C) Mg cannot form	(C) Mg cannot form complexes									
	(D) Be can form con	(D) Be can form complexes due to its very small size.									
2.	On dissolving moderate amount of sodium metal in liquid NH_3 at low temperature, which one of the following does not occur										
	(A) Blue coloured s	(A) Blue coloured solution is obtained.									
	(B) Na^+ ions are formed in the solution.										
	(C) Liquid NH_3 becomes good conductor of electricity.										
	(D) Liquid ammonia r	(D) Liquid ammonia remains diamagnetic.									
3.	The minimum equiva	alent conductance in fused	state is shown by –								
	(A) MgCl ₂	(B) BeCl ₂	(C) CaCl ₂	(D) SrCl ₂							
4.	The metal which car	nnot be produced on redu	ction of its oxide by alumir	nium is							
	(A) K	(B) Mn	(C) Cr	(D) Fe							
5.	Magnesium on reaction with very dilute \ensuremath{HNO}_3 gives										
	(A) NO	(B) N ₂ O	(C) H ₂	(D) NO ₂							
6.	The alkali metal that	t reacts with nitrogen dire	ctly to form nitride is								
	(A) Li	(B) Na	(C) K	(D) Rb							
7.	Which of the following statement is/are false for alkali metals?										
	(A) Lithium is the strongest reducing agent										
	(B) Na is amphoteric in nautre										
	(C) Li ⁺ is exceptionally small										
	(D) All alkali metals give blue solution in liquid ammonia										
8.	Amongst LiCl, RbCl, are :-	Amongst LiCl, RbCl, $BeCl_2$ and $MgCl_2$, the compounds with the greatest and least ionic character respectively are :-									
	(A) LiCl, RbCl	(B) RbCl, $BeCl_2$	(C) RbCl, MgCl_2	(D) MgCl ₂ , BeCl ₂							
9.	$\mathrm{K_2CS_3}$ can be called	potassium									
	(A) sulphocyanide	(B) thiocarbide	(C) thiocarbonate	(D) thiocyanate							
10.	Anhydrous MgCl ₂ ca	an be prepared by heating	g MgCl ₂ .6H ₂ O								
	(A) in a current of di										
	(C) until it fuses	(C) until it fuses (D) with lime									
11.	Oxygen ions structur	re in its peroxide, superox	xide, ozonide :								
	(A) O_2^- , O_2^2 , O_3^{-2}	(B) O_2^{-2} , $O_2^{}$, O_3^{-}	(C) O_2^{-2} , O^{-2} , O_3^{-}	(D) O_2^- , O_2^{-3} , O_3^{-2}							

12.	In presence of iron, alkali metal react with liquid ammonia and form								
	(A) Metal mixture + H_2	(B) Iron metal mixture + H_2							
	(C) Metal mixture	(D) Metal amide + H_2							
13.	The ionic conductance of following cation in a given concentration are in the order								
	(A) $Li^+ < Na^+ < K^+ < Rb^+$	(B) $Li^+ > Na^+ > K^+ > Rb^+$							
	(C) $Li^+ < Na^+ > K^+ > Rb^+$	(D) $Li^+ = Na^+ < K^+ < Rb^+$							
14.	Which of the following does not give an oxide	on heating -							
	(A) $\mathrm{MgCO_3}$ (B) $\mathrm{Li_2CO_3}$	(C) $ZnCO_3$ (D) K_2CO_3							
15.	On heating sodium metal in the current of dr	g ammonia leads to the formation of which gas-							
	(A) $NaNH_2$ (B) NaN_3	(C) NH_3 (D) H_2							
16.	On allowing ammonia solution of s-block me reason is:-	tals to stand for a long time, blue colour becomes fade. The							
	(A) Formation of NH_3 gas	(B) Formation of metal amide							
	(C) Cluster formation of metal ions	(D) Formation of metal nitrate							
17.	When Na and Li placed in dry air we get :-								
	(A) NaOH, Na ₂ O, Li ₂ O	(B) Na ₂ CO ₃ , Na ₂ O ₂ , Li ₂ O							
	(C) Na ₂ O, Li ₃ N, NH ₃	(D) Na ₂ O, Li ₂ O, Li ₃ N							
18.	The hydride ion H^- is stronger base than its hydroxide ion OH^- . Which of the following reaction will occur if sodium hydride is dissolved in water:-								
	(A) $H_{(aq)}^- + H_2O \rightarrow H_3O^+$	(B) $H_{(aq)}^- + H_2O \rightarrow OH^- + H_2$							
	_	(D) $H^- + H_2O \rightarrow No reaction$							
	(C) H + $H_2O \rightarrow H_2 + O_2$	(D) II $+$ II ₂ O \rightarrow No reaction							
19.	(C) H + $H_2O \rightarrow H_2 + O_2$ Which can not be used to generate H_2 :-	(D) II $+$ II ₂ O \rightarrow No reaction							
19.		(C) Mg + NaOH (D) LiH + H_2O							
19. 20.	Which can not be used to generate H_2 :-	(C) Mg + NaOH (D) LiH + H ₂ O							
	Which can not be used to generate H_2 :- (A) Al + NaOH (B) Zn + NaOH	(C) Mg + NaOH (D) LiH + H ₂ O							
	Which can not be used to generate H_2 :- (A) Al + NaOH (B) Zn + NaOH Only those elements of s-block can produce s	(C) Mg + NaOH (D) LiH + $\rm H_2O$ superoxides which have :-							
	Which can not be used to generate H ₂ :- (A) Al + NaOH (B) Zn + NaOH Only those elements of s-block can produce s (A) High ionisation energy (C) High charge density	(C) Mg + NaOH (D) LiH + H_2O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition $M_2^{-1}SO_4.M_2^{-11}(SO_4)_3.24H_2O$. Where M^{11}							
20.	Which can not be used to generate H ₂ :- (A) Al + NaOH (B) Zn + NaOH Only those elements of s-block can produce s (A) High ionisation energy (C) High charge density Alum is the name used for all double salts stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while M ¹ stands for	(C) Mg + NaOH (D) LiH + H_2O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition $M_2^{-1}SO_4.M_2^{-11}(SO_4)_3.24H_2O$. Where M^{11}							
20.	Which can not be used to generate H ₂ :- (A) Al + NaOH (B) Zn + NaOH Only those elements of s-block can produce s (A) High ionisation energy (C) High charge density Alum is the name used for all double salts stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while M ¹ stands for	(C) Mg + NaOH (D) LiH + H_2O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition $M_2^{-1} SO_4 M_2^{-11} (SO_4)_3 .24 H_2O$. Where $M_2^{-11} SO_4 M_2^{-11} (SO_4)_3 .24 H_2O$. Where $M_2^{-11} SO_4 M_2^{-11} (SO_4)_3 .24 H_2O$.							
20.	Which can not be used to generate H_2 :— (A) Al + NaOH Only those elements of s-block can produce so (A) High ionisation energy (C) High charge density Alum is the name used for all double salts stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while M ¹ stands for (A) Li ⁺ , Cu ⁺ , Ag ⁺ (B) Li ⁺ , NH ₄ ⁺ , Na ⁺	(C) Mg + NaOH (D) LiH + H ₂ O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition M ₂ ¹ SO ₄ .M ₂ ¹¹¹ (SO ₄) ₃ .24H ₂ O. Where M ¹¹¹ :- (C) Na ⁺ , K ⁺ , Rb ⁺ (D) Ca ⁺² , Mg ⁺² , Sr ⁺²							
20.	Which can not be used to generate H_2 :— (A) Al + NaOH Only those elements of s-block can produce so (A) High ionisation energy (C) High charge density Alum is the name used for all double salts a stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while Ml stands for (A) Li ⁺ , Cu ⁺ , Ag ⁺ (B) Li ⁺ , NH ₄ ⁺ , Na ⁺ Identify the correct statement -	(C) Mg + NaOH (D) LiH + H ₂ O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition M ₂ ¹ SO ₄ .M ₂ ¹¹¹ (SO ₄) ₃ .24H ₂ O. Where M ¹¹¹ :- (C) Na ⁺ , K ⁺ , Rb ⁺ (D) Ca ⁺² , Mg ⁺² , Sr ⁺² Ca than plaster of paris							
20.	Which can not be used to generate H ₂ :- (A) Al + NaOH Only those elements of s-block can produce so (A) High ionisation energy (C) High charge density Alum is the name used for all double salts is stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while M ¹ stands for (A) Li ⁺ , Cu ⁺ , Ag ⁺ (B) Li ⁺ , NH ₄ ⁺ , Na ⁺ Identify the correct statement - (A) Gypsum contains a lower percentage of Call	(C) Mg + NaOH (D) LiH + H ₂ O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition M ₂ ¹ SO ₄ .M ₂ ¹¹¹ (SO ₄) ₃ .24H ₂ O. Where M ¹¹¹ :- (C) Na ⁺ , K ⁺ , Rb ⁺ (D) Ca ⁺² , Mg ⁺² , Sr ⁺² Ca than plaster of paris paris							
20.	Which can not be used to generate H ₂ :- (A) Al + NaOH Only those elements of s-block can produce so (A) High ionisation energy (C) High charge density Alum is the name used for all double salts of stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while Ml stands for (A) Li ⁺ , Cu ⁺ , Ag ⁺ (B) Li ⁺ , NH ₄ ⁺ , Na ⁺ Identify the correct statement - (A) Gypsum contains a lower percentage of (B) Gypsum is obtained by heating plaster of	(C) Mg + NaOH (D) LiH + H ₂ O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition M ₂ ¹ SO ₄ .M ₂ ¹¹¹ (SO ₄) ₃ .24H ₂ O. Where M ¹¹¹ ::- (C) Na ⁺ , K ⁺ , Rb ⁺ (D) Ca ⁺² , Mg ⁺² , Sr ⁺² Ca than plaster of paris paris ion of gypsum							
20.	Which can not be used to generate H ₂ :- (A) Al + NaOH Only those elements of s-block can produce so (A) High ionisation energy (C) High charge density Alum is the name used for all double salts be stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while Ml stands for (A) Li ⁺ , Cu ⁺ , Ag ⁺ (B) Li ⁺ , NH ₄ ⁺ , Na ⁺ Identify the correct statement - (A) Gypsum contains a lower percentage of (B) Gypsum is obtained by heating plaster of (C) Plaster of paris can be obtained by hydrate	(C) Mg + NaOH (D) LiH + H ₂ O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition M ₂ ¹ SO ₄ .M ₂ ¹¹ (SO ₄) ₃ .24H ₂ O. Where M ¹¹¹ :- (C) Na ⁺ , K ⁺ , Rb ⁺ (D) Ca ⁺² , Mg ⁺² , Sr ⁺² Ca than plaster of paris paris ion of gypsum ation of gypsum							
20. 21. 22.	Which can not be used to generate H ₂ :- (A) Al + NaOH Only those elements of s-block can produce so (A) High ionisation energy (C) High charge density Alum is the name used for all double salts be stands for Al ⁺³ , Cr ⁺³ , Fe ⁺³ , while M ¹ stands for (A) Li ⁺ , Cu ⁺ , Ag ⁺ (B) Li ⁺ , NH ₄ ⁺ , Na ⁺ Identify the correct statement - (A) Gypsum contains a lower percentage of (B) Gypsum is obtained by heating plaster of (C) Plaster of paris can be obtained by partial oxide)	(C) Mg + NaOH (D) LiH + H ₂ O superoxides which have :- (B) High electronegativity (D) Low ionisation potential having the composition M ₂ ¹ SO ₄ .M ₂ ¹¹ (SO ₄) ₃ .24H ₂ O. Where M ¹¹¹ :- (C) Na ⁺ , K ⁺ , Rb ⁺ (D) Ca ⁺² , Mg ⁺² , Sr ⁺² Ca than plaster of paris paris ion of gypsum ation of gypsum							

24.	Na^+ and Ag^+ differ in									
	(A) Na ₂ CO ₃ is	thermally stable w	hile Ag ₂ CO ₃ de	composes i	nto Ag, CO ₂	and O_2				
	(B) Ag ⁺ forms	complexes, Na ⁺ do	oes not							
	(C) NaCl is water soluble, AgCl is insoluble									
	(D) NaBr-yellow and AgBr pale yellow									
25.	The stability order of oxide, peroxide and superoxide of alkali metal is									
	(A) Normal oxide > super oxide > per oxide									
	(B) Normal oxide > per oxide > super oxide									
	(C) super oxide > per oxide > normal oxide									
	(D) per oxide > normal oxide > super oxide									
26.	Match list I with list II and choose the correct answer from the codes given below									
	List I			List I	I					
	(A) NaNO ₃			(a) Baking	g soda					
	(B) Na(NH ₄)Hl	PO_4		(b) Chile	salt peter					
	(C) NaHCO ₃			(c) Microc	cosmic salt					
	(D) $Na_2CO_3.1$	0H ₂ O		(d) Washing soda						
	Codes is :									
		Α	В	С		D				
	(A)	a	Ь	С		d				
	(B)	b	С	a		d				
	(C)	С	a	b		d				
	(D)	d	a	Ь		c				
27.	Which of the	following statement	is not correct							
	(A) LiOH is ar	(A) LiOH is amphoteric in nature								
	(B) LiCl is solu	ıble in pyridine								
	(C) Li ₃ N is sta	(C) $\text{Li}_3 \text{N}$ is stable while $\text{Na}_3 \text{N}$ doesn't exist even at room temperature								
	(D) BeO is am	photeric in nature								
28.	Which of the	following statement	is correct for	s-block eler	ments :-					
	(A) Be has small	allest atomic size in	II A group							
	(B) Li is most	metallic								
	(C) Mg impart	red colour to the	flame							
	(D) Cs is most	reducing in water								
29 .	Which of the	following are ionic	carbides?							
	(A) CaC ₂	(B) Al ₄	C_3	(C) SiC		(D) Be ₂ C				
30.	Which of the	following groups of	of elements hav	e chemical	properties th	nat are most similar :				
	(A) Na, K, Ca			(B) Mg,	Sr, Ba					
	(C) Be, Al, Ca	ı		(D) Be, Ra, Cs						

31.	Which of the following	statements are false?					
	(A) BeCl ₂ is a linear mo	plecule in the vapour st	ate but it is polymeric in the	e solid state			
	(B) Calcium hydride is c	called hydrolith					
	(C) Carbides of both Be	e and Ca react with wa	ter to form acetylene				
	(D) Oxides of both Be a	and Ca are amphoteric					
32 .	The incorrect statement	c(s) is/are :					
	(A) Mg cannot form cor	mplexes					
	(B) Be can form comple	exes due to a very sma	ll atomic size				
	(C) The first ionisation p	potential of Be is highe	r than that of Mg.				
	(D) Mg forms an alkalin	e hydroxide while Be t	orms amphoteric oxides.				
33 .	Na ₂ SO ₄ is water soluble	e but BaSO ₄ is insolubl	e because :				
	(A) The hydration energ	y of Na ₂ SO ₄ is higher	than that of its lattice energ	yy			
	(B) The hydration energ	sy of Na ₂ SO ₄ is less tha	an that of its lattice energy				
	(C) The hydration energ	by of ${\sf BaSO}_4$ is less than	n that of its lattice energy				
	(D) The hydration energy of ${\rm BaSO}_4$ is higher than that of its lattice energy						
34.	$BeCl_2 + LiAlH_4 \longrightarrow \Sigma$	X + LiCl + AlCl ₃					
	(A) X is lithium hydride		(B) X is BeH ₂				
	(C) X is BeCl_2 $2H_2O$		(D) X is LiH				
35.	$X \xrightarrow{CaCl_2} CaCl_2 + Y$	$'\uparrow$; the effective ingre	dient of X is :				
	(A) OCl	(B) Cl	(C) OCl ⁺	(D) OCl ₂			
36.	Which of the following	substance(s) is/are used	l in laboratory for drying pu	rposes?			
	(A) Anhydrous P_2O_5		(B) Graphite				
	(C) Anhydrous CaCl ₂		(D) Na ₃ PO ₄				
37 .	If X and Y are the seco	and ionisation potentials	s of alkali and alkaline earth	metals of same period, then :			
	(A) X > Y	(B) X < Y	(C) X = Y	(D) X << Y			
38.	$X \xrightarrow{N_2, \Delta} Y \xrightarrow{H_2O}$	Z (colourless gas) — Co	$T_{\mathrm{dSO}_4} \rightarrow T$ (blue colour) :				
	Then, substances Y and	l T are –					
	(A) $Y = Mg_3N_2$ and $T =$	CuSO ₄ 5H ₂ O	(B) $Y = Mg_3N_2$ and $T = 0$	CuSO ₄ 4NH ₃			
	(C) $Y = Mg(NO_3)_2$ and T	$\Gamma = CuO$	(D) $Y = MgO$ and $T = Cu$	SO ₄ 4NH ₃			
39.	When $\rm K_2O$ is added to concentration of :	water, the solution b	ecomes basic in nature be	cause it contains a significant			
	(A) K ⁺	(B) O ²⁻	(C) OH	(D) O ₂ ²⁻			

40. (White ppt) D
$$\xrightarrow{\text{Na}_2\text{CO}_3}$$
 A $\xrightarrow{\text{K}_2\text{CrO}_4}$ (in acetic acid) B (Yellow ppt) dil. $H_2\text{SO}_4$ \downarrow C(White ppt)

If A is the metallic salt, then the white ppt. of D must be of

(A) Magnesium oxide

(B) Red lead

(C) Barium carbonate

- (D) Calcium carbonate
- **41**. Which of the following compounds are paramagnetic in nature?
 - (A) KO₂
- (B) K₂O₂
- (C) Na₂O₂
- (D) RbO₂

- **42**. NaOH(Solid) + CO $\xrightarrow{200^{\circ}C}$ X; product X is :
 - (A) NaHCO₃
- (B) NaHCO₂
- (C) HCOONa
- (D) H_2CO_3

- **43**. EDTA is used in the estimation of :
 - (A) Mg^{2+} ions

(B) Ca^{2+} ions

- (C) Both Ca^{2+} and Mg^{2+} ions
- (D) Mg^{2+} ions but not Ca^{2+} ions
- **44**. Na + $Al_2O_3 \xrightarrow{high \ temperature} X \xrightarrow{CO_2 \ in} Y$; compound Y is :
 - (A) NaAlO₂
- (B) NaHCO₃
- (C) Na₂CO₃
- (D) Na₂O₂

- 45. The compound(s) which have -O-O- bond(s) is/are:
 - (A) BaO₂
- (B) Na₂O₂
- (C) CrO₅
- (D) Fe₂O₃
- **46**. KO_2 finds use in oxygen cylinders used for space and submarines. The fact(s) related to such use of KO_2 is/are :
 - (A) it produces O_2

(B) It produces O₃

(C) It absorbs CO_2

(D) It absorbs both CO and CO_2

- **47**. $CsBr_3$ contains:
 - (A) Cs-Br covalent bonds

(B) Cs³⁺ and Br⁻ ions

(C) Cs^+ and Br_3^- ions

(D) Cs^{3+} and Br_3^{3-} ions

- **48**. Fire extinguishers contain:
 - (A) conc. H_2SO_4 solution

(B) H_2SO_4 and $NaHCO_3$ solutions

(C) $NaHCO_3$ solution

(D) CaCO₃ solution

BRAIN TEASERS						ANSWER KEY EXERCISE				E -2					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	D	В	Α	С	Α	В	В	С	Α	В	D	Α	D	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	D	В	С	D	С	Α	С	D	В	В	Α	Α	A,B,D	B,C
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	C,D,	Α	A,C,	В	Α	A,C	Α	В	В	С	A,D	С	С	С	A,B,C
Que.	46	47	48												
Ans.	A,C	С	В												

TRUE / FALSE

- 1. Magnesium is an essential constituent of chlorophyll, the green colouring matter of plants.
- 2. Setting of cement is an endothermic process.
- 3. Calcium bicarbonate is known in solid state.
- **4.** BeH₂ is an ionic hydride.
- **5**. BeCO₃ is thermally stable compounds.
- **6.** In the electrolysis of fused calcium hydride, hydrogen is liberated at cathode.
- 7. MgCl₂.6H₂O on heating forms MgCl₂.
- 8. Sodium when heated in excess of oxygen gives sodium oxide.
- 9. In group IA of alkali metals, the ionisation potential decreases down the group. Therefore, lithium is a poorer reducing agent in gaseous medium.
- 10. The softness of group IA metals increases down the group with increasing atomic number.

FILL IN THE BLANKS

- 1. Anhydrous magnesium chloride is obtained by heating the hydrated salt with......
- **2.** Ca(OH)₂ is..... basic than $Mg(OH)_2$.
- 3. CaH₂ is comercially known as.....
- 4. Magnesium burn is air forming and
- 6. A standard solution of sodium hydroxide cannot be prepared by direct weighing because......
- 7. Potassium bicarbonate cannot be prepared by solvay process because......
- 8. Solution of alkali metals in liquid ammonia conducts electricity due to......

MATCH THE COLUMN

1.		<u>Column-I</u>	\Box	<u>Column-II</u>			
1.	(A) (B) (C) (D)	Hydrolith Nitrolium Dolomite Pearl's ash	(p) (q) (r) (s)	Contain Ca Used as a fertilizer Used to prepare H ₂ Contain potassium			

2.		Column-I	Column-II				
	(A)	Solvay process	(p)	NaCl			
	(11)		(P)	Naci			
	(B)	Evolve $CO_2 \uparrow$ on heating	(q)	Na_2O_2			
	(C)	aq. soln. is neutral towards litmus	(r)	$NaHCO_3$			
	(D)	Oxone	(s)	$\mathrm{Na_{2}CO}_{3}$			

3.		Column-I		<u>Column-II</u>	
	(A)	Metal sulphate $\xrightarrow{\Delta}$ metal oxide + SO $_2$ + O $_2$	(p)	Ba	
	(B)	Metal cation + $K_2CrO_4 \longrightarrow$ yellow ppt	(q)	Sr	
	(C)	Metal + NH $_3$ $\xrightarrow{\text{(liquid)}}$ blue solution	(r)	Na	
	(D)	$\mathrm{MCl_2}$ + conc. $\mathrm{H_2SO_4} \longrightarrow \mathrm{white}$ ppt.	(s)	Mg	

ASSERTION & REASON QUESTIONS

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I : Li_2SO_4 do not form double salt like alum.

Because

Statement-II : Atomic size of Li is too small.

2. Statement-I: NaCl when exposed in air it becomes wet.

Because

Statement-II: NaCl contains hygroscopic impurities like CaCl₂, MgCl₂ etc.

Statement-I: Lithium is the weakest reducing agent among alkali metals.

Because

3.

Statement-II : In alkali metals I.P. decreases down the group.

4. Statement-I: BaCO₃ is more soluble in HNO₃ than in plain water.

Because

Statement-II: Carbonate is a weak base and reacts with the H⁺ from the strong acid causing the

barium salt to dissociate.

5. Statement-I : $BeCl_2$ fumes in moist air.

Because

Statement-II: BeCl₂ reacts with moisture of form HCl gas.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

$$A \xrightarrow{\Delta} B$$
 (oxide) + CO_2

$$B + H_2O \longrightarrow C$$

$$C + CO_2 \longrightarrow A \text{ (milky)}$$

$$C + NH_4Cl \xrightarrow{\Delta} D$$
 (gas)

$$D + H_2O + CO_2 \longrightarrow E$$

$$E \, + \, NaCl \longrightarrow F$$

$$F \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O$$

1. A is:

(A) Ca(HCO₃)₂

(B) CaCO₃

(C) CaO

(D) Na₂CO₃

- 2. B and C are:
 - (A) CaO, Ca(OH)

(B) Ca(OH)₂, CaCO₃

(C) CaCO₃, Ca(OH)₂

(D) Ca(OH)₂, CaO

- **3.** D, E and F are:
 - (A) NH₃, NH₄Cl, NH₄HCO₃
 - (B) NH₃, NH₄HCO₃, NaHCO₃
 - (C) NH₄HCO₃, Na₂CO₃, NaHCO₃
 - (D) None

Comprehension # 2

Following given passage the five observation regarding alkali metals are mentioned.

- (i) On exposure to air, sodium hydroxide becomes liquid and after some time it changes to white powder.
- (ii) In water LiF is least soluble fluorides among fluorides of alkali metal, but its solublity increases as HF is added in aqueous solution.
- (iii) LiH more stable than NaH when heated separately
- (iv) When excess of $Na_2S_2O_3$ solution is added to the $FeCl_3$ solution an intense violet colouration is produced, but violet colour disappeared shortly
- (v) Between Na⁺ and Ag⁺, Ag⁺ is stronger Lewis acid.
- 1. The explanation of observation (v) is :
 - (A) Because Na⁺ has inert gas configuration which has greater polarisation power
 - (B) Because Ag⁺ has inert gas configuration which has greater polarisation power
 - (C) Because Ag+ has pseudo inert gas configuration which has lesser polarisation power
 - (D) Because Ag+ has pseudo inert gas configuration which has greater polarisation power
- 2. The explanation for the observation (iv) is :
 - (A) Initially with $FeCl_3$, $Na_2S_2O_3$ produce an intense violet colour substance $Fe_2(S_2O_3)_3$. But $Fe_2(S_2O_3)_3$ changes to Fe^{2^+} & $S_4O_6^{2^-}$ on standing
 - (B) Initially with FeCl_3 , is reduced to FeCl_2 by $\text{Na}_2\text{S}_2\text{O}_3$. FeCl_2 so produced undergo unstable complex formation $\text{Fe}(\text{S}_2\text{O}_3)_3^{4-}$ which is violet in colour.
 - (C) Initially with FeCl_3 , $\text{Na}_2\text{S}_2\text{O}_3$ produce colloidal Fe which is violet in colour. After sometime, the colloidal suspension changes to the ppt of Fe.
 - (D) There is no reaction
- 3. As per observation (iii) LiH is more stable than NaH, because :
 - (A) Due to small size of Li⁺, the lattice energy of LiH is greater
 - (B) Due to greater size of H, the lattice energy of LiH is greater
 - (C) LiH is more covalent than NaH
 - (D) Due to greater size of Na+, the lattice energy of NaH is greater.
- 4. As per observation (ii) the solubility of LiF increases in the presence of HF, because:
 - (A) The HF further ionises to H⁺ & F⁻
- (B) In the presence of HF, there will be a comon ion effect
- (C) In the presence HF, F^- is converted to HF_2^- (D) All of the above

5.	The reaction for observation (i) can be explained	as -				
	(A) NaOH (S) $\xrightarrow{H_2O}$ NaOH(aq) p; $\xrightarrow{H_2O}$ N	I				
	(B) NaOH (S) $\xrightarrow{H_2O}$ NaOH(aq) $\xrightarrow{-H_2O}$ N	a ₂ O (S)				
	(C) NaOH (S) $\xrightarrow{H_2O}$ NaOH(aq) $\xrightarrow{O_2/air}$ N	a ₂ O (S)				
	(D) NaOH (S) $\xrightarrow{H_2O}$ NaOH(aq) $\xrightarrow{CO_2}$ Na	,CO (S)				
	Comprehension # 3					
	$Na \xrightarrow{H_2O} a \xrightarrow{CO_2} B \xrightarrow{SO_2} C \xrightarrow{Na_2S/I_2} \Lambda$	$D \xrightarrow{Ag^{+}/salt} E \text{ (complex)}$				
1.	The compound B and C are :					
	(A) Na ₂ CO ₃ , Na ₂ SO ₄					
	(B) NaHCO ₃ , Na ₂ SO ₄					
	(C) Na ₂ CO ₃ , Na ₂ SO ₃					
	(D) None of these					
2 .	The compound D is:					
	(A) Na ₂ SO ₄					
	(B) Na ₂ S ₄ O ₆					
	(C) Na ₂ S ₂ O ₅					
	(D) $Na_2S_2O_3$					
3 .	Oxidation number of each 'S' atom in compound	D :				
	(A) + 2, + 2	(B) + 4, 0				
	(C) + 6, -2	(D) + 5, - 1				
	Comprehension # 4					
	Alkali metals readily react with oxyacids forming corresponding salts like $\rm M_2CO_3$, $\rm MHCO_3$, $\rm MNO_3$, $\rm M_2SO_4$ etc. with evolution of hydrogen. They also dissolve in liquid $\rm NH_3$ but without the evolution of hydrogen. The colour of its dilute solution is blue but when it is heated and concentrated then its colour becomes bronze.					
1.	Among the nitrate of alkali metals which one of	an be decomposed to its oxide?				
	(A) NaNO ₃	(B) KNO ₃				
	(C) LiNO ₃	(D) All of these				
2.	Among the carbonates of alkali metals which o	ne has highest stability?				
	(A) Cs ₂ CO ₃	(B) Rb_2CO_3				
	(C) K ₂ CO ₃	(D) Na ₂ CO ₃				
3.	Which of the following statement about the sul	phate of alkali metal is correct?				
	(A) Except $\mathrm{Li_2SO_4}$ all sulphate of other alkali r	netals are soluble in water				
	(B) All sulphates of alkali metals except lithium	sulphate forms alum.				
	(C) The sulphates of alkali metals cannot be hy	drolysed.				
	(D) All of these					

- 4. Which of the following statement about solution of alkali metals in liquid ammonia is correct?
 - (A) The solution have strong oxidizing properties.
 - (B) Both the dilute solution as well as concentrated solution are paramagnetic in nature
 - (C) Charge transfer is the responsible for the colour of the solution
 - (D) None of these
- 5. Which metal bicarbonates does not exist in solid state?

(i) LiHCO₃

(ii) Ca(HCO₃)₂

(iii) Zn $(HCO_3)_2$

(iv) NaHCO₃ (v) AgHCO₃

EXERCISE

(A) (ii), (iii), (v)

MISCELLANEOUS TYPE QUESTION

Comprehension #4: 1. (C)

(B) (i), (ii), (iii)

(C) (i), (ii), (v)

(D) (ii), (iii), (iv)

			INOVER	IXL I			
<u>True / False</u>							
1 . T 2 . F	3 . F	4. F	5. F	6. F 7.	F 8. F	9 . T	10. T
<u>Fill in the Bla</u>	<u>nks</u>						
1. Dry HCl	2. More	3. Hydr	olyth 4. Mgc	o, Mg ₃ N ₂ 5.	Vigrowly, slow	vly, no actio	on
6. Absorb moistur	e & CO ₂ from	atmosphere	7. Amm	onated e ⁻			
Match the Co.	<u>lumn</u>						
1. (A) \rightarrow p,r; (B)	\rightarrow p,q ; (C) \rightarrow	$p : (D) \rightarrow s$	2. (A) →	r,s ; (B) \rightarrow r,s	$; (C) \rightarrow p ; (D)$	\rightarrow q	
3. (A) \rightarrow p,q,s ; (B	$(S) \rightarrow p,q; (C) -$	→ p,q,r,s ; (D	$\rightarrow p,q$				
<u> Assertion - Re</u>	ason Quest.	ions					
1 . A 2 . A	3 . D	4. C	5. A				
<u>Comprehension</u>	Based Q	uestions					
Comprehension	#1 : 1 . (B)	2. (A)	3. (B)				
Comprehension	#2 : 1 . (D)	2. (A)	3 . (A)	4. (C)	5 . (D)		
Comprehension	#3 : 1 . (C)	2. (D)	3 . (C)				

3. (D)

4. (D)

5. (A)

2. (A)

ANSWER KEY

- **1.** Explain the following:
 - (i) The reaction between marble and dilute H_2SO_4 is not used to prepare carbon dioxide.
 - (ii) Lime water becomes turbid on passing CO2 though it, but becomes clear when more CO2 is passed.
 - (iii) Alkaline earth metals have higher melting points than alkali metals.
 - (iv) Beryllium does not exhibit a covalency beyond 4.
- ${\bf 2.}$ PbO $_{_2}$ is soluble in NaOH and also in HCl. What does it reflect about the nature of PbO $_{_2}$?
- **3.** What happens when:
 - (i) Hot and concentrated caustic soda solution reacts with iodine.
 - (ii) White phosphorus is heated with caustic soda.
 - (iii) Excess of caustic soda reacts with zinc sulphate solution.
 - (iv) Excess of NaOH is added to AlCl₂ solution.
- 4. Write balanced equation for reaction between
 - (i) Na₂O₂ and water
- (ii) KO₂ and water
- (iii) Na₂O₂ and CO₂
- Element A bruns in nitrogen to give an ionic compound B. Compound B reacts with water to give C and D. A solution of C becomes milky on bubbling carbon dioxide. Identify A, B, C and D.
- 6. In water LiF is least soluble fluoride among fluorides of alkali metals, but its solubility increases as HF is added in aqueous solution, why?
- 7. What happens when $CuSO_4(aq.)$ is treated with excess of $Na_2S_2O_3$ solution?
- 8. Arrange the following in order of increasing

(i) Thermal stability BeSO₄, MgSO₄, CaSO₄

(ii) Polarising power Be^{2+} , Mg^{2+} , Ca^{2+}

(iii) Solubility in H_2O Be(OH)₂, Mg(OH)₂, Ca(OH)₂

(iv) Covalent nature BeCl₂, MgCl₂, CaCl₂

(v) Hydrolysis nature BeCl₂ MgCl₂, CaCl₂

(vi) Lattice energy CaF_2 , MgF_2 , BaF_2

(vii) Hydration energy Be^{2+} , Mg^{2+} , Ba^{2+}

(viii) Solubility in water MgF_2 , BaF_2 , BeF_2

(ix) Basic nature Be, Mg, Ca, Sr

9. Hydrogen reacts with a metal (A) to give an ionic hydride (B). The metal (A) gives brick red colour with bunsen flame. The hydride formed is commonly known by its trade name. The compound (B) on treating with water gives back H_2 and (C). Identify (A), (B) and (C).

- Insoluble CaSO₄ is formed which deposists on the surface of marble and prevents further action of dilute H_2SO_4 , so the evolution of CO_2 ceases after sometime.
 - (ii) Insoluble $CaCO_3$ is first precipitated which dissolves in excess of CO_2 due to the form of $Ca(HCO_3)_2$.

$$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O;$$

(Insoluble)

$$CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$$

(Soluble)

- (iii) Metallic bonding is much stronger in alkaline earth metals as two electrons are present in valence shell.
- (iv) The outermost energy shell in beryllium is the second. It cannot accommodate more than 8 electrons and hence a covalency limit 4 cannot be exceeded.
- 2. PbO₂ are amphoteric nature

$$PbO_{2} + 4HCl \longrightarrow PbCl_{4} + 2H_{2}O$$

 $PbO_2 + 2NaOH \longrightarrow Na_2PbO_3 + H_2O$

- 3. (i) $3I_2 + 6NaOH \rightarrow 5NaI + NaIO_3 + 3H_2O$
- (ii) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$
- (iii) $ZnSO_4 + 2NaOH \longrightarrow Zn(OH)_2 + Na_2SO_4$ (iv) $AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 + 3NaCl_4$

 $Zn(OH)_{2}+2NaOH \longrightarrow Na_{2}[Zn(OH)_{4} \qquad Al(OH)_{3}+NaOH \longrightarrow Na[Al(OH)_{4}]$

NaAlO₂

- $\mathbf{4}$. (i) Na₂O₂ + 2H₂O \longrightarrow 2NaOH + H₂O₃
 - (ii) $KO_2 + H_2O \longrightarrow KOH + H_2O_2 + O_2$
 - (iii) $2Na_2O_2 + 2CO_2 \longrightarrow 2Na_2CO_3 + O_2$
- 5. A = Ca,
- $B = Ca_{2}N_{2}$
- $C = Ca(OH)_{o}$
- $D = NH_0$
- **6**. In presence of HF, F^- is converted into bifluoride ion HF_2^- , allowing further dissolution of solid LiF.
- 7. $CuSO_4 + Na_2S_2O_3 \longrightarrow CuS_2O_3 + Na_2SO_4$

$$2CuS_2O_3 + Na_2S_2O_3 \longrightarrow CuS_2O_3 + Na_2S_4O_6$$

Cupric thiosulphate

$$3Cu_2S_2O_3 + 2Na_2S_2O_3 \longrightarrow Na_4[Cu_6(S_2O_3)_5]$$

Sodium cuprothiosulphate.

- 8. (i) BeSO₄ < MgSO₄ < CaSO₄
- (ii) $Ca^{2+} \le Mg^{2+} \le Be^{2+}$
- (iii) Be $(OH)_2 \le Mg(OH) \le Ca(OH)_2$
- (iv) CaCl₂ < MgCl₂ < BeCl₂
- (v) $CaCl_2 \leq MgCl_2 \leq BeCl_2$
- (vi) $BaF_2 < CaF_2 < MgF_2$
- (vii) $Ba^{2+} \le Mg^{2+} \le Be^{2+}$
- (viii) $BaF_2 \leq MgF_2 \leq BeF_2$
- (ix) Be < Mg < Ca < Sr
- 9. (i) Ca gives brick red colour to flame
- (ii) Ca + $H_2 \longrightarrow CaH_2$ (hydrolith, trade name)
 - (A) (B)
- (iii) $CaH_2 + 2H_2O \longrightarrow Ca(OH)_2 + 2H_2$
 - (B)
- (C)

- When a gas (A) is passed through dry KOH at low temperature, a deep red coloured compound (B) and a gas (C) are obtained. The gas (A) on reaction with but-2-ene followed by treatment with $\rm Zn/H_2O$ yields acetaldehyde. Identify (A), (B) and (C)
- 2. A compound (X) imports a golden yellow flame and shows the following reactions:
 - (i) Zinc powder when boiled with a concentrated aqueous solution of (X) dissolves and hydrogen is evolved.
 - (ii) When an aqueous solution of (X) is added to an aqueous solution of stannous chloride, a white precipitate is obtained first which dissolves in excess of solution of (X). Identify (X) and write equations at step (i) and (ii).
- 3. A white solid is either Na_2O or Na_2O_2 . A piece of red litmus paper turns white when it is dipped into a freshly made aqueous solution of the white solid.
 - (i) Identify the substance and explain with balanced equation
 - (ii) Explain what would happen to the red litmus if the white solid were the other compound
- 4. (A) is binary compound of a univalent metal. 1.422 g of (A) reacts completely with 0.321 g of sulphur in an evacuated and sealed tube to give 1.743 g of a white crystalline solid (B) that formed a hydrated double salt (C) with $Al_2(SO_4)$. Identify (A),(B) and (C).
- 5. Element (M) is a shiny and highly reactive metal (melting point 63°C) and element (X) is a highly reactive non-metal (melting point 7.2°C). They react to form a compound with the empirical formula MX, a colourless, brittle solid that melts at 734°C. When dissolved in water or when in the molten state, the substance conduct electricity. When chlorine gas is bubbled through an aqueous solution containing (MX), a reddish-brown liquid appears and and Cl⁻ are formed. From these observations, identify M and X.
- 6. Name an element which is invariable bivalent and whose oxide is soluble in excess of NaOH and its dipositive ion has a noble gas core.
- 7. Out of the elements marked A, B, C, D, E, F, G and H:
 - (a) Which form superoxide?
 - (b) Which form thermally stable carbonate?
 - (c) Which forms strongest base?
 - (d) Which show diagonal relationship?
 - (e) Which forms amphoteric oxide?

Α	В								
С	D								
Е	F								
G	Н								

1. The gas (A) on treatment with but-2-ene followed by treatment with Zn/H_2O yields acetaldehyde and thus (A) is ozone

(i)
$$O_3 + CH_3 - CH = CH - CH_3 \longrightarrow CH_3 - C$$

(ii)
$$5O_3 + 2KOH \longrightarrow 2KO_3 + H_2O(g) + 5O_2$$

(A) Potassium ozonide (C) Deep red (B)

- $\begin{array}{ccc} \mathbf{2}. & \text{(i)} & \text{Zn} + 2\text{NaOH} \longrightarrow \text{Na}_2\text{ZnO}_2 + \text{H}_2 \\ & \text{(X)} \end{array}$
 - (ii) (X) is also justified by step 2 reactions:

$$2\text{NaOH} + \text{SnCl}_2 \longrightarrow \text{Sn(OH)}_2 + 2\text{NaCl}$$

$$(X) \qquad \qquad \text{White ppt.}$$

$$\text{Sn(OH)}_2 + 2\text{NaOH} \longrightarrow \text{Na}_2\text{SnO}_2 + 2\text{H}_2\text{O}$$

$$(\text{Excess}) \qquad \text{Soluble}$$

$$(X)$$

- 3. (i) $Na_2O_2 + 2H_2O \longrightarrow 2NaOH + H_2O + [O]$ [O] + Litmus \longrightarrow White (bleaching)
 - (ii) The other compound Na₂O will give NaOH on dissolution in water. The red litmus will turn to blue.
- 5. The given facts suggest M to be potassium (K) and (X) to be bromine (Br₂).

$$2K + Br_2 \longrightarrow 2KBr$$

(Ionic solid with m. pt. 734°C)

- **6**. Be
- 7. (a) E and G (b) C, E and G (c) G (d) A and D (e) B

1.	A metal M readily forms its sulphate MSO ₄ which is water soluble. It forms oxide MO which becomes inert of									
	heating. It forms insoluble	e hydroxide which is solu	ble in NaOH. The metal M	is:-	[AIEE	E-2002]				
	(1) Mg	(2) Ba	(3) Ca	(4) Be						
2.	KO_2 is used in space and	d submarines because it			[AIEE	E-2002]				
	(1) Absorbs CO ₂ and inc	rease O_2 concentration								
	(2) Absorbs moisture									
	(3) Absorbs CO ₂									
0	(4) Produces ozone		and the second s							
3.			time to time. This helps in	:-	[AIEE	E-2003]				
		gravel mixed with cement								
	(2) Converting sand into	ng needle like crystals of	hudrated silicates							
	(4) Keeping it cool	ing needle like crystals of	flydrated silicates							
4.	- · · ·	nates decreases down the	magnesium group due to	decrease in-	[AIEE	E-2003]				
	(1) Inter-ionic attraction		3 3 1		•	•				
	(2) Entropy of solution for	ormation								
	(3) Lattice energy of soli	ds								
	(4) Hydration energy of	cations								
5.	The substance not likely	to contain CaCO ₃ is :-			[AIEE	E-2003]				
	(1) Sea shells		(2) Dolomite							
	(3) A marble statue		(4) Calcined gypsum							
6.	One mole of magnesium	nitride on reaction with	excess of water gives :-		[AIEE	E-2004]				
	(1) Two mole of \mbox{HNO}_3		(2) Two mole of NH_3							
	(3) 1 mole of NH_3		(4) 1 mole of HNO ₃							
7.	The ionic mobility of alka	ali metal ioins in aqueous	solution is maximum for :-		[AIEE	E-2006]				
	(1) Rb ⁺	(2) Li ⁺	(3) Na ⁺	(4) K ⁺						
8.	Which of the following o	n thermal-decomposition	yields a basic as well as an	acidic oxide ?	[AIEE	E-2012]				
	(1) NH ₄ NO ₃	(2) NaNO ₃	(3) KClO ₃	(4) CaCO ₃						
9.	Fire extinguishers contain	n $\mathrm{H_2SO_4}$ and which one o	of the following :-	[AIEEE	-2012	(Online)]				
	(1) CaCO ₃		(2) $NaHCO_3$ and Na_2CO_3							
	(3) Na ₂ CO ₃		(4) NaHCO ₃							
10.	Which one of the followi	ng will react most vigorou	ısly with water ?	[AIEEE-	-2012	(Online)]				
	(1) Li	(2) K	(3) Rb	(4) Na						
11.	A metal M on heating in r	nitrogen gas gives Y. Y on t	treatment with H ₂ O gives a c	olourless gas w	hich wh	ien passed				
	through $CuSO_4$ solution	gives a blue colour, Y is :	-		-2012	(Online)]				
	(1) NH ₃	(2) MgO	(3) Mg3N2	$(4) \ \mathrm{Mg(NO_3)_2}$						

PREVIOUS YEAR QUESTIONS									s-BLOCK					EXERCISE-05(A)				
Q.	1	2	3	4	5	6	7	8	9	10	11							
A.	4	1	3	4	4	2	1	4	3	3	3							

1.	Which process is used in the extractive metallurgy of Mg:										
	(A) Fused salt ele	ectrolysis	(B) Self reduction								
	(C) Aquaous solu	ition electrolysis	(D) Thermite reduc	tion							
2 .	A sodium salt on	treatment with MgCl_2 given	ves white precipitate only on	heating. The anion of sodium sa	alt is :						
	(A) HCO ₃	(B) CO ₃ ²⁻	(C) NO ₃	(D) SO ₄ ²⁻							
3.	The following co	ompounds have been arra	anged in order of their inc	reasing thermal stabilities. Identi: (I	fy the IT 96)						
	(I) K_2CO_3 (II) M	${\rm IgCO}_3$ (III) ${\rm CaCO}_3$ (IV) ${\rm E}$	BeCO ₃								
	(A) I < II < III < I	V	(B) $IV < II < III < I$								
	(C) IV < II < I < I	II	(D) $II < IV < III < I$								
4.	Property of the	alkaline earth metals that	increases with their atomic	number is - (I	IT 97)						
	(A) Ionisation end	(A) Ionisation energy									
	(B) Solubility of t	their hydroxides									
	(C) Solubility of	their sulphates									
	(D) Electronegati	ivity									
5.	The characteristic	cs of solid sodium chlorid	le are	(R	EE 96)						
	(1) Brittle	(2) Ionic	(3) Covalent	(4) Non-conductor							
	(A) 1 & 2	(B) 3 & 4	(C) 1, 2, & 4	(D) 1, 3, & 4							
6.	Which of the foll	lowing are not amphoterio	c –	(R	EE 97)						
		(2) Sr(OH) ₂	(3) Ca(OH) ₂	(4) Al(OH) ₃							
	(A) 1 & 3	(B) 2 & 3	(C) 1 & 4	(D) 2 & 4							
7.	Highly dilute solu	ition of sodium in liquid a	ammonia :								
	(i) Shows blue co	blour	(ii) Exhibits electrica	(ii) Exhibits electrical conducitive							
	(iii) Produces soc	lium amide	(iv) Produces hydro	gen gas							
	(A) (i), (ii), (iii)	(B) (i), (ii)	(C) (iii), (iv)	(D) Only (ii)							
8.	Which of the foll	owing hydrides is not ioni	С								
	(A) CaH ₂	(B) BaH ₂	(C) SrH ₂	(D) BeH ₂							
9.	The compound(s)	formed upon combustion	of sodium metal in excess a	air is (are) [JEE 2009]							
	(A) Na ₂ O ₂ ASSERTION &	(B) Na ₂ O REASON QUESTIONS	(C) NaO ₂	(D) NaOH							
	(A) Statement–I	(A) Statement-I is true, statement-II is true; statement-II is a correct explanation for statement-I									
	(B) Statement- statement-I	(B) Statement-I is true, statement-II is true ; statement-II is NOT a correct explanation for statement-I									
	(C) Statement-I	(C) Statement-I is true, statement-II is false									
<u>.</u>		(D) Statement-I is false, statement-II is true									
1.	_	IkaIi metals dissolve inz l	iquid ammonia to give blue	solutions. (IIT	2007)						
	Because :										

Statement-II: Alkali metals in liquid ammonia give solvated species of the type $[M(NH_3)n]^+$ (M = alkali metals)

SUBJECTIVE QUESTIONS

1. Identify the following:

$$Na_2CO_3 \xrightarrow{SO_2} A \xrightarrow{Na_2CO_3} B \xrightarrow{Elemental S} C \xrightarrow{I_2} D$$

Also mention the oxidation state of S in all the compounds.

- 2. Beryllium chloride shows acidic nature in water or why BeCl, is easily hydrolysed?
- 3. The crystalline salts of alkaline earth metals contain more water of crystallisation than the corresponding alkali metal salts, why?
- 4. Arrange the following sulphates of alkaline earth metals in order of their decreasing thermal stability. $BeSO_4$, $MgSO_4$, $CaSO_4$, $SrSO_4$.
- 5. Why the solubility of calcium acetate decreases while that of lead nitrate increases with increase in temperature.
- 6. Why magnesium is not precipitated from a solution of its salt by NH_4OH In the presence of NH_4Cl .

P.	REVIOUS Y	EARS QUESTIO	NS	ANSWER	KEY	EXERCISE				
•	1 . (A)	2 . (A)	3 . (B)	4 . B	5 . C	6 . B	7 . B	8 . D		
	9 . A, B									

- <u>Assertion Reason Questions</u>
 - **1**. B
- Subjective Questions
 - 1. A = NaHSO₃, Oxidation state of S = +4

 $B = Na_{2}SO_{3}$, Oxidation state of S = +4

 $C = Na_2S_2O_3$, Oxidation state of S = +6 & -2

 $D = Na_2S_4O_6$, Oxidation state of S = + 5 & 0

2. BeCl₂ is a salt of weak base $Be(OH)_2$ and strong acid HCl and thus undergoes hydrolysis to result in an acidic solution in water.

$$BeCl_2 + 4H_2O \xrightarrow{H_3 chration} [Be(H_2O)_4]^{2+} + 2Cl^{-}$$

- 3. Alkaline earth metals have smaller size and more nuclear charge.
- 4. $SrSO_4 > CaSO_4 > MgSO_4 > BeSO_4$
- 5. $(CH_3COO)_2$ Ca shows exothermic dissolution whereas $Pb(NO_3)_2$ show endothermic dissolution.
- **6.** The dissociation of NH_4OH (a weak electrolyte) is suppressed in presence of NH_4CI due to common ion effect. Thus, $[OH^-]$ in solution becomes low. The ionic product of concentrations of Mg^{2+} and OH^- ions does not exceed the solubility product of $Mg(OH)_2$ and thus $Mg(OH)_2$ is not precipitated.